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Abstract: FLOPS (FLoating-point Operations Per Second) is a commonly used performance metric for scientific
programs that rely heavily on floating-point (FP) calculations. The metric is based on the number of FP operations
rather than instructions, thereby facilitating a fair comparison between different machines. A well-known use of this
metric is the LINPACK benchmark that is used to generate the Top500 list. It measures how fast a computer solves
a dense N by N system of linear equations Ax=b, which requires a known number of FP operations, and reports the
result in millions of FP operations per second (MFLOPS). While running a benchmark with known FP workloads
can provide insightful information about the efficiency of a machine’s FP pipelines in relation to other machines,
measuring FLOPS of an arbitrary scientific application in a platform-independent manner is nontrivial.

The goal of this paper is twofold. First, we explore the FP microarchitectures of key processors that are under-
pinning the LC machines. Second, we present the hardware performance monitoring counter-based measurement
techniques that a user can use to get the native FLOPS of his or her program, which are practical solutions readily
available on LC platforms. By nature, however, these native FLOPS metrics are not directly comparable across differ-
ent machines mainly because FP operations are not consistent across microarchitectures. Thus, the first goal of this
paper represents the base reference by which a user can interpret the measured FLOPS more judiciously.

1 Floating Point Pipeline

1.1 AMD Dual-Core and Quad-Core Opteron: Peloton and TLCC
Over the last two decades, the x86 instruction set architecture and its 64-bit extension, x86-64, have added various
support to improve their FP performance. Intel’s 80486 was the first x86 CPU that integrated the x87 FP unit into
the chip. Then, its Pentium line added the MMX instruction set that enabled a form of SIMD FP operations. In
response, AMD added the 3DNow! instruction set extension starting from its K6-2 CPU, further enhancing MMX.
Intel subsequently improved the concept of SIMD operations with its SSE (Streaming SIMD Extension) instruction
set extension into Pentium III. Ever since, Intel and AMD have continued to enhance the SSE-based technologies,
adding incremental upgrades to the base SSE technology (i.e., SSE2, SSE3, SSE4, and etc.).

The microarchitectures supporting these x87 instructions and other extensions vary from one CPU to another.
Generally, however, the x87 FP instructions mostly flow through an 80-bit scalar FP pipeline that operates on a FP
register stack consisting of eight 80-bit registers, and the MMX instructions operate on MMn registers that were
originally just aliases to the x87 FP unit stack registers, but later mapped to more efficient register files. A series of
SSE instruction set extensions has been the response to the shortcomings of initial SIMD instruction set extensions
such as the MMX extension. SSE instructions are designed to operate on 128-bit vector registers named XMM
registers, making it easy to perform SIMD and scalar x87 FP operations simultaneously.

In the case of Opteron x86-64 processors, AMD’s out-of-order, superscalar 64-bit processors that are compatible
with the x86 ISA, these SSE extensions operate on sixteen 128-bit XMM registers. Hence, they are capable of exe-
cuting up to two packed double-precision FP operations or four packed single-precision FP operations with a single
instruction. However, the Dual-Core Opteron implementation does not have a wide enough data path that enables
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an instruction to execute the entire 128-bit wide FP operations at once. Thus, it chops the instruction into two 64-
bit micro-operations (uops) and executes each uop one after another: this processor requires two cycles to complete
two double-precision FP operations through its SSE extensions. To overcome this limitation, the Quad-Core Opteron
implementation widened the data path such that its SSE execution pipeline can perform two double-precision FP
operations per cycle without having to split an instruction into two uops.

LC’s recent Linux clusters are based on processors in this AMD Opteron family: the Dual-Core Opteron Processor
8216 powers LC’s Peloton class machines such as Atlas, Zeus, Rhea, Hopi and Minos while the Quad-Core Opteron
Processor 8354 are the microprocessor of choice for TLCC class clusters such as Juno and Hype.

Due in large part to pressure on backward compatibility, an x86 or x86-64 family processor must support most of
these instruction set extensions. Clearly, collecting an accurate FLOPS through these multiple pipelines is a daunting
task as a user must profile dynamic events occurring over all the FP execution pipelines.

1.2 IBM Power4 and Power5[+]: Purple
The POWER5 (and POWER5+) processor chip contains two 64-bit POWER5[+] cores. Identical to a POWER4 core,
this out-of-order, superscalar POWER5 core contains two FP execution units, each of which forms an independent
FP pipeline. Significantly improved from their predecessor chips (i.e., POWER3), these FP units support six-staged
execution pipelines for all PowerPC FP instructions including the FP divide instruction and the FP fused multiply-add
instruction that makes the theoretical peak of a core four FP operations per cycle. On POWER3, the FP divide and the
FP square root instructions are not pipelined, hindering certain applications from getting optimal performance. These
Power4 and Power5 are the microprocessors on Purple machines. Um and Uv that had been delivered earlier consists
of Power4 while Purple and Up, newer Purple machines, are equipped with Power5+.

1.3 IBM PowerPC 440 with the Double Hummer FP Unit: BlueGene/L
The IBM PowerPC 440 embedded microprocessor that embodies BlueGene/L implements a dual-issue FP unit. This
unit consists of two sets of FP register files, the primary file (32 64-bit FP registers) and the secondary file (32 64-
bit FP registers), capable of executing the original PowerPC Book E FP instruction set and the SIMD-like Oedipus
instruction set. Oedipus is an instruction set extension designed to boost FP complex arithmetic and other FP SIMD
operations. The secondary register file forms a true FP register file that is used to hold additional operands for these
new instructions. Given each processor running at 700 MHz and the FP unit supporting two packed double-precision
fused multiply-add instructions, the theoretical peak of each PowerPC core is 2.8 GFLOPS.

2 Hardware Counter Technologies and Native FP Operation Events
Modern microprocessors include integrated hardware support for non-intrusive monitoring of a variety of processor
and memory subsystem events. Commonly referred to as hardware counters, this capability is very useful to both
computer architects and application developers. Detailed software instrumentation can introduce perturbation into
an application and the measurement process itself. On the other hand, simulation can become impractical for large,
complex applications. These hardware performance monitoring counters fill a gap that lies between detailed micro-
processor simulation and software instrumentation because they have relatively low perturbation and can provide an
insight into the processor and memory-system behavior [3].

These hardware counters are typically implemented as a small set of registers embedded into a microprocessor,
counting events, occurrences of specific signals related to the processor’s function. In particular, counters of most
contemporary microprocessors can monitor various signals that arise as a result of dynamic FP instructions flowing
through FP pipelines. For example, IBM POWER5 can count various FP instructions executed through each of two FP
units (i.e., the number of FP divide instructions executed through the first FP unit, the number of FP fused multiply-add
instructions through the second unit, etc.), and also count other events like a FP unit receiving a denormalized operand.

The granularity and event types that hardware counters can measure are specific to a processor. Even within
revisions of the same microprocessor family, hardware counter architectures and capabilities can differ widely. In
the following, we detail hardware counter architectures of various LC platforms, and hardware events relevant to
measuring FLOPS.
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2.1 Hardware Counters in the AMD Opteron Microprocessor Family
Both AMD Dual-Core and Quad-Core Opteron processors have four integrated 48-bit hardware counter registers, each
of which is associated with a dedicated event selection register. Tools or user codes can write bit fields into an event
selection register to count a specific event through its associating hardware counter. The main differences between
Dual-Core and Quad-Core lie in the use of event selection registers, as Quad-Core uses all 64 bits of each selection
register, while Dual-Core only uses the lower 32 bits, and in available event types and their semantics.

2.1.1 FP Operation Events for AMD Dual-Core Opteron

On an AMD Dual-Core processor, we consider two hardware events to measure FLOPS: the Retired FP/MMX
Instructions (RFI) event and the Dispatched FPU Operations (DFO) event [1]. RFI counts all retired FP op-
erations executed through x87, MMX, 3DNow!, and SSE-based instructions, excluding those operations speculatively
executed but never completed. Unfortunately, this metric contains FP loads and stores in addition to FP computations,
thereby resulting in counts that are consistently significantly higher than the expected FLOPS, often by factors of two
or more. Hardware counters on this processor provide an opportunity to correct this as a hardware event can measure
FP loads and stores. However, the correction factors themselves are speculative, and can easily lead to undercounting
errors similar in magnitude to those seen in the pure speculative counts.

On the other hand, the DFO event counts only FP computations. However, it includes those speculative operations
that never graduate from the system, leading to over-counting errors. The margin of error can be significantly higher
on complex production codes.

We also note that on this CISC processor these counts are based on the number of uops rather than original
instructions. Internal to an x86 processor, uops form the basic micro-operation set in which one or more uops are
mapped to a high level instruction visible to programmers. Particularly, such an architecture maps some of more
complex FP instructions like divide and square root into a combination of multiple FP uops, which becomes another
source for over-counting errors [7, 5]. For example, our measurements indicate that the dynamic instruction mix of
an LLNL multi-physics code contains four percent FP divide and square root instructions, each of which is measured
to require around five uops on this processor.

Taken together, our recommendation for this processor is to use the DFO metric as the upper bound for FLOPS
measured at the uop level. But, should the lower bound of FLOPS be needed, a user should consider using RFI
corrected with the speculative FP load and store instruction count.

2.1.2 FP Operation Events for AMD Quad-Core Opteron

Besides the RFI and DFO metrics, whose semantics remains identical, AMD added the Retired SSE Operations
(RSO) event to the Quad-Core processor, a new event designed to count all retired SSE instructions precisely [2].
The event can be configured to measure the number of FP operations either directly at the uop level or at the FLOP
level, as AMD defines FLOP based on their proprietary information. Clearly, RSO does not capture x87, or MMX
and 3DNow! instructions, but can allow collecting of precise data points at the FLOP level for all SSE instructions.
Moreover, AMD began deprecating support for some of the old FP pipelines such as x87 for its 64-bit computing; thus
this event can capture the lion’s share of FP operations.

Taken together, our recommendation for this processor is still to use DFO as the upper bound for FLOPS, which
provides a metric at the uop level directly comparable to the Dual-Core processor. Additionally, we recommend
measuring RSO both at the uop level and the FLOP level, which can provide an additional insight into more accurate
FP computation intensity for SSE operations.

2.2 Hardware Counters in the IBM Power4/Power5[+] Microprocessor Family
Both Power4 and Power5 cores have a limited set of integrated performance registers to monitor hardware events.
Power4 contains eight counters, and Power5 extends the capability to the thread level in order to support Simultaneous
Multi-Threading (SMT), dedicating six counters per each SMT thread. Counters can be independently configured to
monitor more than 300 performance events occurring on the processor or memory subsystem.

To measure an accurate FLOPS count on Power4 and Power5 cores, we must consider three metrics: the PM FPU FIN
(FPU produced a result) event, the PM FPU STF (FPU executed store instruction) event, and the PM FPU FMA (FPU ex-
ecuted multiply-add instruction) event. PM FPU FIN counts the combined number of cycles in which each of two FP
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units produces a result. But this event includes not only all of the numeric instructions but also FP stores (but not
FP loads). In addition, it only counts a FP fused multiply-add instruction as a single operation despite the fact that
this instruction normally executes two FP operations. PM FPU STF and PM FPU FMA can be measured to correct these
factors:

FLOPcount = PM FPU FIN −PM FPU ST F +PM FPU FMA (1)

In ( 1), subtracting PM FPU STF corrects the count for FP stores, and adding PM FPU FMA gives a weight to
fused multiply-add instructions twice as much as other scalar floating instructions.

Thus, our recommendation for these processors is to normalize this derived metric against the execution time, and
to use it as the upper bound for FLOPS. This metric is an upper bound as a compiler can use fused multiply-add
instructions in place for simple add (fadd) or multiply (fmul) by applying zero to an operand to cancel out either
operation. Furthermore, all three events used in the metric include uncommitted speculative instructions.

2.3 Hardware Counters in the IBM PowerPC 440d Embedded Processor
The BlueGene/L compute node contains a large number of performance counters a.k.a the Universal Performance
Counters in both of its PowerPC 440d embedded processor cores as well as interconnects, the torus and tree network
alike [6]. The system maps these counters in the Device Control Bus, thereby allowing the access through Device
Control Registers (DCR). Similar to other microprocessors, this system has much larger set of hardware events than
there are performance counters, and allows simultaneous monitoring of up to 48 events.

As for events germane to FLOPS, unfortunately, the hardware counter facility does not include events for measur-
ing SIMD add/subtract or multiply instruction counts, making a profiling cumbersome. A user must obtain relevant
information from two separate measurements of different builds. As decribed in [4], the steps are

1) Compile the code without SIMD instructions (i.e., use -qarch=440 with the xlC compiler), using unoptimized
(non-SIMD) versions of computationally intense libraries. Measure the total FPU operation count with this executable.
2) Recompile the code, enabling the SIMD instructions (using -qarch=440d). Obtain the total number of cycles and,
thus, the total time with this executable. The FP operation count in this case is potentially inaccurate and should be
discarded. 3) Divide the total FP operation count by the total time to compute the performance.

3 Software Tools, Libraries, and Techniques

3.1 Performance Application Programming Interface
PAPI is a popular software specification of a cross-platform interface to hardware performance counters. In addition to
the specification, the PAPI project has developed a reference implementation of this specification as a library that has
been widely deployed on HPC systems. This implementation uses a layered approach where its machine-dependent
layer hides underlying native interfaces and hardware details from its the upper layer, enhancing portability. For each
platform, this reference implementation attempts to map as many of the PAPI standard events as possible to native
events on that platform.

The most relevant PAPI standard events germane to FLOPS are PAPI FP OPS and PAPI FP INS. On Dual-Core
Opteron, the PAPI FP OPS event is currently mapped to DFO and the PAPI FP INS event is to RFI while on Quad-
Core both PAPI FP OPS and PAPI FP INS are mapped to RSO in FLOP mode (see section 2.1). A user can bracket
his code using interface calls programmed with these events, and get native FLOPS over a section of the code.

3.1.1 PapiEx

Although measuring FLOPS over a key section of the code is useful, users often have to measure FLOPS over the
entire execution without having to instrument the code. papiex is a performance analysis tool designed to assist a
user with such an effort. It transparently and passively measures the hardware performance counters of an application
using the PAPI library. Furthermore, it intercepts creation and destruction of processes and threads, thereby reporting
performance monitoring information for all threads and child processes of a program. However, it is not a tool for
selective instrumentation.
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3.1.2 IBM hpmcount

hpmcount is an IBM utility that starts an application and provides at the end of execution wall clock time, hardware
performance counters information, derived hardware metrics, and resource utilization statistics. It used to be a com-
ponent of HPM Toolkit under IBM Alphaworks, but since became part of the base AIX OS. The utility command is
typically available in /usr/pmapi/tools on AIX.

hpmcount also comes with an instrumentation library (libhpm) that provides an instrumented program with a
summary output for each instrumented region in the program. This library supports serial and parallel (MPI, threaded,
and mixed mode) applications, written in Fortran, C, and C++.

On Power4 and Power5 systems, this utility uses the native Performance Monitoring API (PMAPI) that restricts
accessing of individual events. Thus, an event must be accessed using a group ID through a predefined PMAPI event
group to which a target event belongs. For example, the pm fpuX5 (Floating point and L1 events) group collects
PM FPU0 FIN and PM FPU1 FIN whose addition is equal to PM FPU FIN, and also reports PM FPU STF. On the other
hand, the pm fpuX4 (Floating point events) group is one of the groups that allows measuring of PM FPU FMA.

4 Putting it all together
In this section, we measure the native FLOPS of a simple code on various LC platforms using the software tools and
techniques described.

4.1 DAXPY
We use as our test program a Double-precision scalar Alpha X Plus Y, DAXPY, which is a common operation used in
scientific applications. It is a combination of scalar multiplication and vector addition:

Y = α ·X +Y where α is a scalar, and X and Y are vectors.
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Listing 1: DAXPY.c�
/∗
∗ E x p e c t e d FLOP Count : 2 ∗ SIZE ( SIZE i s d e f i n e d below ) .
∗
∗ /

# d e f i n e SIZE 100000

double X[ SIZE ] ;
double Y[ SIZE ] ;
c o n s t double PI = 3 . 1 4 1 5 9 2 ;
c o n s t double a l p h a = −2.30459;

i n t main ( )
{

i n t i ;

f o r ( i =0 ; i < SIZE ; ++ i ) {
X[ i ] = PI ;
Y[ i ] = PI ;

}

f o r ( i =0 ; i < SIZE ; ++ i )
Y[ i ] = a l p h a ∗ X[ i ] + Y[ i ] ;

re turn 0 ;
}
� �
4.2 Measuring FLOPS Using hpmcount on IBM Power5+: the Up Machine
On the Up machine, we first compile DAXPY.c using the xlc compiler with no optimization flags.

up041{user}185: xlc -O0 DAXPY.c -o DAXPY

We then create the hpmcount input text file, libHPM events, in the directory where we run our experiments, and
type pm fpuX4 into this file. Next, we type

up041{user}186: hpmcount -o hpmout.fpuX4 DAXPY

At the end of the execution, performance counter data are dumped into an output file whose file name is prefixed
with hpmout.fpuX4. The output file reports the metrics in its hardware counter section as shown in Listing 2.

Listing 2: pm fpuX4�
PM FPU SINGLE (FPU e x e c u t e d s i n g l e p r e c i s i o n i n s t r u c t i o n ) : 0
PM FPU STF (FPU e x e c u t e d s t o r e i n s t r u c t i o n ) : 306500
PM FPU0 FIN ( FPU0 produced a r e s u l t ) : 306222
PM FPU1 FIN ( FPU1 produced a r e s u l t ) : 100195
PM INST CMPL ( I n s t r u c t i o n s comple t ed ) : 4692373
PM RUN CYC ( Run c y c l e s ) : 5324768
� �

To collect PM FPU FMA, we then replace pm fpuX4 with pm fpuX5 in the libHPM events file, and run another
hpmcount experiment. Listing 3 shows the PM FPU FMA count.
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Listing 3: pm fpuX5�
PM FPU FMA (FPU e x e c u t e d m u l t i p l y −add i n s t r u c t i o n ) : 100012
� �

Using the derived metric shown in ( 1), FLOPcount then becomes 199,929 (306,222 + 100,195 - 306,500 +
100,012). Notice that this value is very close to the expected FLOP count: 200,000; during an execution, 100,000
fused multiply-add instructions would have been completed to update 100,000 elements with the DAXPY operation.
Dividing this by the execution time, FLOPS works out to be 32 MFLOPS.

4.3 Measuring FLOPS Using PapiEx on AMD Dual-Core Opteron: the Atlas Machine
Similarly on the Atlas machine, we first compile DAXPY.c using the Intel compiler with no optimization flags

atlas544{user}31: icc -O0 DAXPY.c -o DAXPY

Because PAPI FP OPS is configured with our recommended metric on this microprocessor, we simply run DAXPY
under the control of papiex utility with PAPI FP OPS.

atlas544{user}32: papiex -e PAPI FP OPS ./DAXPY

The papiex output is dumped into a file named target code.papiex.machine.pid by default, and hence the experi-
ment creates DAXPY.papiex.atlas544.34314. Listing 4 shows the snippet of this file.

Listing 4: DAXPY.papiex.atlas544�
Proc u s e c s : 3252
Proc c y c l e s : 7844059
I /O c y c l e s : 0
PAPI FP OPS : 200018
� �

FLOPcount is 200,018, and FLOPS works out to be 61 MFLOPS.

4.4 Measuring FLOPS Using PapiEx on AMD Quad-Core Opteron: the Juno Machine
On the Juno machine, we also compile DAXPY.c using the Intel compiler with no optimization flags. But on this
microprocessor because PAPI FP OPS is not configured with our recommended metric (DFO), but rather RSO, we
run DAXPY under the control of papiex configured with native DFO metrics: DISPATCHED FPU:OPS MULTIPLY
and DISPATCHED FPU:OPS ADD. The native DISPATCHED FPU:OPS MULTIPLY event measures the number of uops
executed through the FP multiply pipeline, and DISPATCHED FPU:OPS ADD through the FP add pipeline. These two
execution pipelines form the lowest unit that serves all FP numeric computations on this computer architecture.

juno0{user}112: papiex -e DISPATCHED FPU:OPS MULTIPLY -e DISPATCHED FPU:OPS ADD ./DAXPY

Listing 5 shows the snippet of the resulting output file.

Listing 5: DAXPY.papiex.juno0�
Proc u s e c s : 13472
Proc c y c l e s : 14814952
I /O c y c l e s : 0
DISPATCHED FPU : OPS MULTIPLY : 100016
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DISPATCHED FPU : OPS ADD : 100017
� �
FLOPcount is 200,033, and FLOPS works out to be 14 MFLOPS.
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